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Abstract
Haplotype-based risk models can lead to powerful meth-
ods for detecting the association of a disease with a
genomic region of interest. In population-based studies
of unrelated individuals, however, the haplotype status
of some subjects may not be discernible without ambi-
guity from available locus-specific genotype data. A
score test for detecting haplotype-based association us-
ing genotype data has been developed in the context of
generalized linear models for analysis of data from
cross-sectional and retrospective studies [1]. In this arti-
cle, we develop a test for association using genotype
data from cohort and nested case-control studies where
subjects are prospectively followed until disease inci-
dence or censoring (end of follow-up) occurs. Assuming
a proportional hazard model for the haplotype effects,
we derive an induced hazard function of the disease giv-
en the genotype data, and hence propose a test statistic
based on the associated partial likelihood. The proposed
test procedure can account for differential follow-up of
subjects, can adjust for possibly time-dependent envi-
ronmental co-factors and can make efficient use of valu-

able age-at-onset information that is available on cases.
We provide an algorithm for computing the test statistic
using readily available statistical software. Utilizing si-
mulated data in the context of two genomic regions
GPX1 and GPX3, we evaluate the validity of the pro-
posed test for small sample sizes and study its power in
the presence and absence of missing genotype data.

Copyright © 2004 S. Karger AG, Basel

Introduction

Population-based association studies are becoming in-
creasingly popular for studying genetic mechanisms of
complex diseases. A population-based sample, in which
linkage disequilibrium extends over a very short distance
of the genome, can permit mapping of disease susceptibil-
ity genes on a finer scale than that which can be achieved
by family-based linkage studies [2]. Moreover, popula-
tion-based studies can be powerful tools for identifying
susceptibility genes with modest effects that would be dif-
ficult to detect in linkage studies [3]. Despite concerns
about population stratification, association studies based
on unrelated individuals have been appealing because of
the cost and other practical advantages. In particular, bio-
logic samples from existing large epidemiologic studies,
typically based on unrelated individuals, provide an ex-
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cellent opportunity to study susceptibility genes for dis-
eases.

Association studies often involve investigating the risk
of a disease in relation to a number of variant single
nucleotide polymorphisms (SNPs) identified within a
candidate genomic region. Haplotype-based analysis is
widely believed to be an efficient way of utilizing such
SNP data, as it can fully exploit the multivariate linkage
disequilibrium pattern between markers and can poten-
tially capture cis-interactions between causal variants [1,
4, 5]. Statistical considerations also favor haplotype anal-
ysis; it can be viewed as a technique for reducing data
dimension as the number of haplotypes observed within a
genomic region is usually considerably smaller than the
number of all possible combination of SNP genotypes [6].
Thus, a haplotype-based model can provide a parsimon-
ious way of specifying disease risk associated with multi-
ple genetic markers and hence can lead to a powerful test
for detecting gene-disease association.

In recognition of various advantages of population-
based studies and haplotype-based analysis, in recent
years, various researchers have developed a number of
methods for detecting haplotype-based associations using
the case-control epidemiologic study design [1, 4, 7, 8].
This design recruits a fixed number of diseased (cases)
and non-diseased subjects (controls) and is efficient for
the study of rare diseases. Traditionally, a major concern
for the case-control design with questionnaire-based ex-
posure assessment has been the potential bias due to dif-
ferential recall of exposure history by cases and controls.
Moreover, post-disease measurement of endogenous ex-
posures (biomarkers) from biologic samples may not pro-
vide accurate information on exposure history before the
disease, since biomarkers may be affected by the disease
process itself. These considerations, although they do not
directly affect genetic association studies, may have im-
portant implications for the adjustment of environmental
exposures and, more importantly, for studying gene-envi-
ronment interactions.

An alternative to case-control sampling design that
does not have the above-mentioned limitations is the pro-
spective cohort design. In this design, biologic samples
and questionnaire-based data are collected at baseline
from a group of healthy subjects. This cohort is then fol-
lowed prospectively for a certain period of time, during
which information on the disease incidence, including age
at onset, is recorded. Full cohort studies, although popu-
larly used for common traits such as heart disease, are not
practical for study of rare diseases such as cancer, as the
study may require genotyping and ascertaining expensive

environmental exposures for an unnecessarily large num-
ber of subjects.

An alternative to prospective cohort design that retains
the efficiency advantage of case-control studies is the
nested case-control study design [9]. In this design, the
biologic sample collected at the beginning of a cohort
study is stored for future use. Every time an incident case
of the disease occurs in the cohort, a small number (typi-
cally one or two) of controls are selected from all subjects
who are still under follow-up but have not developed the
disease. The genotyping effort and collection of expensive
biomarker information are then limited only to cases and
the small number of matched controls, thus greatly reduc-
ing time, cost, and other practical difficulties associated
with full cohort studies. An important aspect of this
design is that a control selected at a particular time point
remains under follow-up as part of the underlying cohort,
and hence remains eligible for being selected as a control
for a future case or/and as a future case itself. During anal-
ysis, cases and their matched controls are compared with
respect to their exposure history using conditional logistic
regression method. The possible dependence among
matched sets, which may arise due to the fact that the
same subject can appear at different matched sets, can be
ignored [9].

Existing major cohort studies, such as the Nurses’
Health Study [10, 11], European Prospective Investiga-
tion into Cancer and Nutrition [12, 13], Multiethnic
Cohort Study [14], alpha-tocopherol, beta-carotene Study
[15, 16], and Health Professionals Follow-Up Study [17],
are now being increasingly used for genetic association
studies. Furthermore, the first cohort consortia on breast
and prostate cancers combining several thousand cases
and controls of existing cohort studies are ongoing to
investigate associations between risk of these cancers and
variation of about 50 genes in the sex hormone and
growth factor pathways. Part of these cohort consortia is
the Prostate, Lung, Colorectal, and Ovarian (PLCO) Can-
cer Screening Trial initiated by investigators from the US
National Cancer Institute to investigate the effectiveness
of early detection for these cancers and to identify etio-
logic determinants of cancer. Besides the cohort consor-
tia, a number of nested case-control studies for various
cancers are now being undertaken for evaluating the asso-
ciation of cancer risk with various candidate genes. Moti-
vated from the PLCO study as well as various other ongo-
ing epidemiologic studies, in this article, we develop a
haplotype-based method for testing gene-disease associa-
tion using genotype data from cohort and nested case-con-
trol studies.
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Traditionally, epidemiologic data from cohort and
nested case-control studies are analyzed using survival
analysis methods in which incidence and age at onset of
the disease are jointly treated as the phenotype of interest,
and the ‘controls’ who do not develop the disease during
the follow-up period are treated as being censored. Such
methods have several attractive features compared to the
alternative logistic regression approach, where disease
outcome is treated simply as a binary phenotype describ-
ing whether a subject developed the disease or not by the
end of the study. In particular, survival analysis methods
can account for the fact that ‘controls’ may be followed for
different lengths of time and that controls who are dis-
ease-free at a certain age may develop the disease in the
future. Moreover, such methods can also efficiently incor-
porate age at onset information, which can lead to
increased power for detecting an association [18].

We assume that the risk (penetrance) of the disease,
given a subject’s pair of haplotypes (diplotype), is de-
scribed by the popular Cox proportional hazards model. If
one could ascertain which diplotype each subject has, that
is, if phase information were known without ambiguity,
then testing for association in the Cox model could be per-
formed using standard statistical software. Typically,
however, in studies of unrelated subjects with genotype
data for individual loci, the haplotype configuration can-
not be determined with certainty for all study subjects.
Such uncertainty may arise due to intrinsic phase ambigu-
ity associated with genotype data that are heterozygous at
multiple loci and/or missing genotype information on
some markers. To deal with such phase ambiguity, we
propose a score statistic based on the partial likelihood
associated with an induced hazard function of the disease
given only unphased genotype information. Based on the
asymptotic theory, we then show that, under the null
hypothesis of no association, the variance of the score
function for haplotype effects can be represented in a
remarkably simple form. We thus propose a test statistic
based on the score and its variance, which can be evaluat-
ed using routinely available statistical software. We study
the performance of the proposed test using simulated data
in the context of two genomic regions, GPX1 and GPX3.

Material and Methods

Cohort and Nested Case-Control Studies
We introduce notations for cohort and nested case-control studies

in this section. Let T denote the (potential) age at onset and C denote
the (potential) age at censoring. The observed phenotype of an indi-
vidual consists of the binary disease status ¢ = I (T ̂  C ) for whether

a subject develops disease, where I is the indicator function, and fol-
low-up time X = min(T, C ). In cohort studies, the genotype informa-
tion G and possibly time-dependent covariates Z (t ) are observed for
all subjects. Suppose K subjects develop the disease during the course
of the study at time points t1 ! t2 ! ... ! tK . We will define R k to be the
set of all subjects in the cohort who are disease-free just before t k ,
including the k th case, and let nk be the number of subjects in R k.

For nested case-control studies, m – 1 controls are sampled with-
out replacement from non-diseased subjects in R k, and the study
sample consists of all cases in the cohort and their matched controls.
Let R̃k be the subset of all controls sampled from R k together with
the k th case, which is of size m. The genotype information G and
covariates Z (t ) are collected only for subjects in �R̃ k: k = 1, ... , K �.
We observe that once the ‘risk sets’, that is, R k for cohort studies and
R̃k for nested case-control studies, have been defined, the standard
partial-likelihood analysis (equivalent to the conditional logistic
regression) for comparing cases and their matching controls within
the ‘risk sets’ are identical for the two designs. Similar correspon-
dence between cohort and nested case-control designs holds for the
methodology we propose below. Thus, for purpose of analysis, the
two designs will not be distinguished for the rest of this article. All the
methodologies will be described with the risk set for the k th case
generally denoted by R*k, keeping in mind that R*k = R k for cohort
studies and R*k = R̃ k for nested case-control studies.

Haplotype-Specific Hazard Model
We assume throughout this article that the underlying time scale

of our analysis is biologic age, but other types of time scale, such as
calender year or time since entry into the study, can also be handled
without any additional complexity. Let D = (H1, H2) denote the
diplotype for an individual, that is, the two haplotypes the individual
carries in his/her two chromosomes. The hazard function of the dis-
ease at age t for an individual in the underlying cohort with diplotype
D can be defined as

ÏD (t ) = lim
‰t ↓ 0

1
‰t

Pr �T D (t, t + ‰t ) AT 6 t, D �.

That is, ÏD (t ) is the instantaneous probability that an individual with
diplotype D will experience the disease at age t given that s/he has
been ‘at risk’, that is, has been free of the disease until time t. Follow-
ing conventional approach, we specify ÏD (t ) using the popularly used
CPH form:

Ï(t AD ) = Ï0(t )eß T„(D ), (1)

where Ï0(t ) is the disease hazard associated with a reference diplo-
type D0, „ (D ) is a vector of numeric values chosen to represent the
diplotype D according to an assumed ‘mode of effect’, and ß is the
vector of associated regression coefficients (association parameters).
We adopt the convention that if H0 is the most commonly observed
haplotype in the data, D0 = (H0, H0) is then used as the baseline diplo-
type for the CPH model. The CPH model allows Ï0(t ), the hazard
function associated with the reference diplotype D0, to be arbitrary
(non-parametric) but assumes the hazard ratio Ï(t AD )/Ï0(t ) = eß T„(D )

to be constant over all ages (t ). In association studies, inference on
the vector of regression parameters ß is of interest, and the baseline
hazard function Ï0(t ) is typically treated as nuisance.

In the above model, the dimension of the vector of regression
coefficients as well as their interpretation depend on the choice of the
function „ (D ). When testing for the effect of haplotypes is of interest,
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„ (D ) can be specified in terms of the constituent haplotypes so that ß
can represent haplotype-specific hazard ratio (relative risk) parame-
ters. The effect of a pair of haplotypes in a diplotype can be specified
according to additive, dominant or recessive models [4, 6, 19]. For
example, if there are H observed haplotypes in a dataset and an addi-
tive mode of effect is assumed for these haplotypes, the vector „ (D )
would have dimension (H – 1) corresponding to (H – 1) non-referent
haplotypes, each element of which represents the number of copies of
the specific non-referent haplotype contained in the diplotype D. In
this case, the vector of regression coefficients ß is also (H – 1)-dimen-
sional, and the regression coefficient corresponding to a specific
haplotype would represent the relative risk associated with one copy
of that haplotype. The main goal of the current article is to develop a
score test for simultaneously testing if all of the regression coeffi-
cients corresponding to a given mode of effect, „ (D ), are equal to
zero, that is, ß = 0. We observe that whatever mode of effect has been
chosen, the hypothesis ß = 0 corresponds to a ‘global null hypothesis’
of no association in the whole genomic region [20]. The statistical
power of such test, however, would depend on how well the assumed
mode of effect can approximate the true underlying effects of the
diplotypes.

If it is desirable to adjust for additional covariates, model (1) can
be expanded to

Ï �t AD, Z (t )� = Ï0(t )eß T„(D ) + ÁTZ (t ), (2)

where Z (t ) denotes a set of possibly time-dependent covariates and Á
denotes the vector of associated regression coefficients representing
the effect of Z (t ) on the disease hazard.

Testing ß = 0 in the Absence of Phase Ambiguity
To facilitate later discussion, we first provide the score statistic

when haplotype configurations for all subjects can be ascertained
without ambiguity. In this setting, inference on the regression param-
eters ß and Á involved in model (2) can be based on the well-known
Cox’s partial likelihood function

L (ß, Á ) = ¶
k:¢k = 1

eß T„ (Dk) + ÁTZ k (tk )

™lDR *k 
eßT„ (Dl ) + ÁTZl (tk )

. (3)

In formula (3), the term corresponding to the k-th disease event can
be viewed as the probability of the observed disease configuration
within the set R̃ k, conditional on the fact that one subject within this
set is known to have developed the disease. An appealing feature of
the partial likelihood is that it does not depend on the ‘nuisance’
baseline hazard function Ï0(t ).

The score function for ß based on the partial likelihood (3) at ß = 0
is given by

Flog L
Fß

= Uß (Á) = ™
k:¢k = 1

�„ (Dk ) – 
™lDR *k 

„ (Dl ) eÁT Zl (tk )

™lDR *k 
eÁTZl (tk ) � , (4)

based on which a score test for ß = 0 can be constructed. Let Á̂ denote
the maximum partial likelihood estimator of Á at ß = 0 satisfying the
score equation UÁ(Á ) = 0 where

Flog L
FÁ

= UÁ (Á) = ™
k:¢k = 1

�Zk (tk ) – 
™lDR *k 

Zl (tk ) eÁ T Zl (tk)

™lDR *k 
eÁTZl (tk ) � . (5)

Let Ißß (Á ) = Flog L /FßFß T, IßÁ (Á) = Flog L /FßFÁ T and IÁÁ (Á ) =
Flog L /FÁFÁ T, all of which are evaluated at ß = 0. From standard
theory of partial likelihood inference, it follows that under the null

hypothesis of no association (ß = 0), the test statistic of the form
Uß (Á̂ )S(Á̂ )–1Uß (Á̂ )T, with

S (Á̂ ) = Ißß (Á̂ ) – IßÁ (Á̂ )I ÁÁ
–1(Á̂ )I T

ßÁ(Á̂ ), (6)
follows a ¯2 distribution with degrees of freedom the same as the
dimension of ß. When no additional covariate effects (Á ) are
included in the model, the score function (4) reduces to

Uß = ™
k:¢k = 1

�„ (Dk ) – 
1
nk

™
lDR *k

„ (Dl )� ,

where nk is the size of R*k and test can be performed using UßIßß
–1U T

ß .

The Induced Hazard Model and Partial Likelihood
Although some molecular technologies are now available for

determining diplotype (D ) status of individuals, technical difficulties
and high cost associated with these methods prohibit use of them in
large-scale association studies. Instead, in typical epidemiologic stud-
ies, the multi-locus genotype information (G ) is available. For indi-
viduals with multiple heterozygous sites, the phase information, that
is, how the alleles are arranged in the two chromosomes, can be ambi-
guous. Below, we describe how the diplotype-specific risk model (2)
can be used to develop a score test for detecting association when
only unphased genotype data are available.

We first derive the hazard function for disease induced by the
haplotype-specific model (2) given a subject’s genotype. Let DG

denote the set of all diplotypes that are consistent with an observed
multi-locus genotype G and Z̃ (t ) denote the history of Z (t ) up to time
t. Given model (2), the disease hazard at time t for a subject with
genotype G and covariates Z (t ) can be expressed in the form (details
shown in Appendix A.1)

Ï �t AG, Z̃ (t )� = Ï0(t )rG �t; f, ß, Á, Ï0(W)�, (7)
where

rG �t; f, ß, Á, Ï0(W)� =

eÁTZ (t ) ™DDDG eß T„ (D ) exp [– �t
0 Ï�s AD, Z̃ (s )�ds] prf(D )

™DDDG exp [– �t
0 Ï�s AD, Z̃ (s )�ds] prf(D )

and prf (D ) denotes the population frequency of the diplotype D
computed under a set of haplotype frequencies f assuming Har-
dy Weinberg Equilibrium (HWE). Above, Ï0(W) represents the base-
line hazard as a functional form. We observe that in equation (7),
rG �t; f, ß, Á, Ï0(W)� can be viewed as a relative hazard function associat-
ed with genotype G and covariates Z (t ) in reference to the baseline
hazard Ï0(t ). Unlike the original CPH model for diplotype-specific
hazard (equation 2), the induced model for genotype-specific risk
does not follow the proportional hazards form, as the relative hazard
function rG �t; f, ß, Á, Ï0(W)� depends on t through the function Ï0(t ).

Based on formula (7) for the induced hazard model, we write
down a partial likelihood of the data as

L�ß, Á, f, Ï0(t )� = ¶
k:¢k = 1

rGk �tk; f, ß, Á, Ï0(W)�
™lDR *k 

rGl �tk; f, ß, Á, Ï0(W)�
. (8)

We observe that unlike the partial likelihood of the data under the
standard CPH model (formula 3), L involves not only the association
parameters of interest ß and covariate effects Á, but also the baseline
hazard function Ï0(t ) and the haplotype frequency parameters f. The
score function of ß evaluated at ß = 0, however, is free of the nuisance
hazard function Ï0(t ). Below, we propose a test for ß = 0 based on this
score function with Á and f estimated from the data.
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The Score Statistic and Its Theoretical Properties
The score function for ß corresponding to the partial likelihood

(8) under the null hypothesis of ß = 0 is

Uß (f, Á ) =

™
k:¢k = 1

�Ef �„ (D ) AG k � – 
™lDR *k 

eÁTZl (tk ) Ef �„ (D ) AGl �
™lDR *k 

eÁTZl (tk ) � , (9)

where Ef �„ (D ) AG �, the expected value for the function „ (D ) given a
subject’s genotype G, is determined according to prf (D AG ) = prf (D )/
™DDDG prf (D ), the probability distribution for all of the subject’s pos-
sible diplotypes given that the subject has genotype G. Two features
of the score function require attention. First, it takes a form similar to
the standard partial-likelihood score function shown in formula (4),
except that the diplotype function „ (D ) is replaced by its expected
value given the genotype data G. Second, under the null hypothesis ß
= 0, the score function does not involve the baseline hazard Ï0(t ),
although it still involves the additional parameters f and Á. To con-
struct the score statistic from Uß (f, Á ), one thus needs to estimate
only f and Á.

Under the null hypothesis, Á can be estimated by maximizing the
partial likelihood (8) over Á with ß fixed at zero. The corresponding
score function for Á has the standard partial likelihood-score form
given in formula (5). Moreover, under the null hypothesis of no
genetic association and assuming the independence of genetic sus-
ceptibility and other cofactors Z (t ), the maximum-likelihood esti-
mate of the haplotype frequencies f, assuming HWE, can be obtained
using the EM algorithm [21–23] based on the pooled sample of all
subjects in the study. The formula for the corresponding likelihood is
given in equation (4) of Excoffier and Slatkin [21]. For studies
involving different ethnic groups who may have different genetic
backgrounds, haplotype frequencies should be estimated stratified by
ethnicity. For nested case-control studies, it is important to note that
although an individual subject can appear multiple times in different
matched case-control sets, he/she should be entered only once in the
EM algorithm for haplotype frequency estimation. We denote esti-
mates of Á and f under ß = 0 by Á̂ and f̂, respectively.

Development of the score test based on the function Uß (f̂, Á̂ )
requires a study of its asymptotic properties. A sketch of the main
results is presented below. The technical proof of these results relies
on martingale theory and is deferred for the appendix A3. Define as
before IßÁ (f, Á ) and IÁÁ (Á ) to be FUß (f, Á )/FÁ and FUÁ (Á )/FÁ, respec-
tively, evaluated at ß = 0. We first show that Uß (f̂, Á̂ ) can be asympto-
tically represented as

1
√n

Uß (f̂ , Á̂ ) " 
1

√n
Uß (f, Á ) – IßÁ (f, Á )I ÁÁ

–1(Á ) 
1

√n
UÁ (Á ). (10)

In equation (10), the first term corresponds to the score-function for
ß that could be used if f and Á were known, and the second term
corresponds to an adjustment term that accounts for additional vari-
ability due to estimating parameter Á from the data. We observe that
estimation of haplotype frequencies f does not add any additional
variability, a consequence of the fact that n–1 FUß (f, Á )/Ff is asympto-
tically negligible (see appendix A3.1 for details). A similar phenome-
non has been observed in the generalized linear model framework
[1, 8].

Based on the representation (10), we then show that under the
null hypothesis of ß = 0, the score-function Uß (f̂, Á̂ ) is asymptotically
normally distributed with a variance-covariance matrix of the form
vßß – ißÁ i ÁÁ

–1i T
ßÁ, where vßß is the asymptotic variance of n–1/2 Uß (f, Á ),

and ißÁ and iÁÁ are the limiting versions of IßÁ and IÁÁ, respectively.
Clearly, ißÁ and iÁÁ can be estimated from the data by the information
matrices IßÁ and IÁÁ, respectively. Moreover, we show that under the
null hypothesis of no association (ß = 0), vßß can be estimated by an
information matrix Ißß (f̂, Á̂ ) of the same form as Ißß (Á̂ ) with „ (D )
being replaced by Ef �„ (D ) AG �.

Thus, under the null hypothesis of no genetic association, the test
statistic of the form Uß (f̂, Á̂ )S–1(f̂, Á̂ )U ß

T (f̂, Á̂ ), where

S (f̂, Á̂ ) = Ißß (f̂, Á̂ ) – IßÁ (f̂, Á̂ )IÁÁ
–1(Á̂ )Iß

T
Á (f̂, Á̂ ), (11)

is asymptotically distributed as ¯2 with degrees of freedom the same
as the dimension of ß. When no covariates are involved, Uß (f, Á )
reduces to

Uß (f) = ™
kk:¢k = 1

	Ef �„ (D ) AGk� – 
1
nk

™
lDR *k

Ef �„ (D ) AGl �
 ,

and the test statistic takes the simple form Uß (f̂)Ißß
–1 (f̂)U ß

T (f̂).

Computation of the Score Statistic
The proposed test statistic can be computed using standard statis-

tical software. By comparing formulas for Ißß (Á ) and Ißß (f, Á ) and
comparing formulas for S (Á ) and S (f, Á ), we observe that Ißß (f, Á )
and S (f, Á ), which correspond to unknown phase information, can be
obtained from the formulas for Ißß (Á ) and S (Á ) corresponding to
known phase information by simply replacing „ (D ) by Ef̂ �„ (D ) AG �
throughout. As indicated before, the score function Uß (f, Á ) also has
the same form as Uß (Á ) except that „ (D ) is replaced by Ef̂ �„ (D ) AG �.
Thus, once Ef̂ �„ (D ) AG � has been obtained based on the estimates of
the haplotype frequencies f, the rest can be handled by any standard
statistical software that can perform CPH analysis. Next, we describe
how we implemented this in the statistical software Splus/R, which
we use for all our numerical examples.
1. Obtain an estimate of the haplotype frequencies f̂ via the EM

algorithm [21–23], using, for example, the HAP.EM function in
software Splus/R, applied to the pooled sample of all non-dupli-
cated subjects in the study.

2. Based on f̂, compute Ef̂ �„ (D ) AG � for each individual subject and
assemble them to form a design matrix for genotypes.

3. Perform ordinary Cox analysis using function COXPH, including
only Z (t ) as covariates to obtain Á̂.

4. Perform ordinary Cox analysis with �Ef̂ �„ (D ) AG �, Z � as covar-
iates, but setting the starting parameter values INIT = to be ß = 0
and Á = Á̂ and the maximum number of iterations ITER.MAX to
be 0.

5. The output score statistic is what is desired if no covariates are
involved. Otherwise, the element at the leftmost corner of the out-
put Hessian matrix would be S–1 (f̂, Á̂ ). Uß (f̂ , Á̂ ) can be obtained
by summing up the individual score function values, which can
be obtained using the function COXPH.DETAIL, across ob-
served disease times.
This algorithm is also useful for simplifying the computation for

the score test for generalized linear models [1]. In particular, Schaid
et al. [1] provided a formula for estimating vßß in the context of GLM
based on the theory of the EM algorithm. However, we observed that
the first term in their formula asymptotically converges to zero, so
that, once the quantity Ep (Xgi ), the conditional expectation of the
diplotype-specific design matrix given the genotype data, was esti-
mated for each individual, the score statistic could be computed
using the standard program for fitting GLM following the same steps
described above.
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Table 1. Estimated haplotype frequencies for GPX1 and GPX3

Haplotypes GPX1

S1 S2 S3 S4 S5 freqb

GPX3

S1 S2 S3 S4 S5 freq

H1 0a 0 0 0 1 0.298 0 0 0 0 0 0.433
H2 0 0 0 0 0 0.267 0 0 0 1 0 0.172
H3 0 0 1 0 1 0.152 0 0 1 0 0 0.116
H4 1 1 0 1 0 0.117 1 1 1 1 1 0.080
H5 0 0 1 0 0 0.099 0 1 1 0 0 0.078
H6 1 0 0 1 0 0.034 0 0 1 1 1 0.045
H7 1 1 1 0 0 0.032 1 1 1 0 0 0.039
H8 1 1 0 0 0 0.038

a 0/1 are common/rare alleles respectively.
b Haplotype frequencies.

Performance Studies
We evaluated the performance of the proposed test using simu-

lated genotype data in the context of two genomic regions, GPX1 and
GPX3. We are currently planning a nested case-control study based
on the PLCO cohort to investigate the association between risk of
prostate cancer and genomic regions encoding four glutathione per-
oxidase selenoproteins. A pilot project for re-sequencing four genes
in this region (GPX1, GPX2, GPX3 and GPX4) using a sample of 31
Caucasian-American subjects which is a part of the SNP500 database
has recently been completed. We plan to use this data for selecting
tagging SNPs to be genotyped in the main case-control study. For our
simulation study, we selected 5 common SNPs (minor allele frequen-
cy 15%) for each of the two genes, GPX1 and GPX3, for the purpose
of illustration. Table 1 shows the corresponding haplotype structures
and frequencies that we estimated using the re-sequencing data.

We simulated data in a setting where a single SNP in a gene was
disease-causative but assumed that the causal SNP was not selected
for genotyping in the main association study, a scenario where haplo-
type analysis based on marker SNPs is often believed to be a power-
ful approach for detecting association [20]. Based on the haplotype
frequencies shown in table 1, we first generated the diplotype data
under the HWE assumption for a cohort of subjects. We then gener-
ated the disease end point for each subject in the cohort based on a
penetrance model, assuming one of the five SNPs was disease-causa-
tive and the other four were ‘pure markers’, in the sense that they did
not affect the disease risk given the true causal SNP. In particular,
when the ith locus was selected as disease-causative, the time-to-
disease-onset (T ) for a subject was generated from the hazard model
Ï(t ASi ) = Ï0eßASi, where Ï0 denotes the baseline hazard of the disease
(assumed to be constant over time), ASi denotes the number of vari-
ant alleles (A ) at the ith locus and ß denote the associated hazard
ratio parameter that quantifies the increase in hazard of the disease
associated with one copy of A. For each subject, we then generated a
random censoring time (C ) based on an exponential distribution.
The disease status was then defined as ¢ = I (T ! C ), and the follow-
up time X was equal to T if the subject was a case (¢ = 1) and equal to
C if the subject was a control (¢ = 0). The baseline hazard for the
disease (Ï0) and for the censoring time were chosen in such a way that

the proportion of cases was fixed approximately at 10% as a fraction
of the total cohort size.

Once the data for the full cohort study were generated, we then
sampled a nested case-control study within the cohort by selecting all
the cases and a set of matched controls. We used a 1:1 case-control
matching ratio. For each case, we selected a matched control by ran-
domly sampling a subject from the non-diseased people in the ‘risk-
set’ defined by all subjects in the cohort whose follow-up time X was
greater than or equal to that of the case. For analysis of each set of
simulated data, we assumed genotype data were available only for
the marker SNPs, but not for the causal SNP. To investigate the pos-
sible effect of missing genotypes, we further deleted the genotype
information for each individual marker for a randomly selected sub-
set of subjects. For computing the score statistic, we fitted the addi-
tive model for the effect of haplotypes, that is, we assumed that the
relative risk associated with two copies of a haplotype was equal to
the square of that associated with one copy. All simulations were
repeated for 500 times.

Results

An important theoretical result whose proof appeared
in the appendix was that under the null hypothesis of no
association, the asymptotic variance of the score statistic
Uß (f̂, Á̂) was not affected by variability associated with the
estimation of the haplotype frequency parameters f by f̂.
In particular, we showed that when no covariates were
involved, the asymptotic variance of the score statistic
Uß (f̂) could simply be estimated by an information matrix
Ißß(f̂), given in formula (14) of the appendix (evaluated at
Á = 0). We assessed the small sample performance of this
estimator using our simulated data. For this part, we used
only data for the GPX1 gene, assuming that the SNP S1

was disease-causative and S2, S3, S4 and S5 were markers,
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Table 2. Empirical/estimated standard error for haplotype-specific score functions

pa ncase
b H1

c H2 H3 H4 H*5

0 100 0.246/0.254 0.510/0.529 0.397/0.397 0.232/0.240 0.513/0.544
500 0.109/0.112 0.228/0.228 0.166/0.172 0.101/0.106 0.236/0.236

0.05 100 0.265/0.266 0.532/0.560 0.403/0.420 0.244/0.246 0.523/0.568
500 0.118/0.117 0.242/0.240 0.182/0.181 0.108/0.108 0.240/0.244

0.10 100 0.273/0.278 0.570/0.593 0.446/0.444 0.243/0.252 0.581/0.598
500 0.120/0.122 0.253/0.254 0.187/0.192 0.109/0.111 0.247/0.252

0.15 100 0.288/0.291 0.576/0.630 0.462/0.469 0.256/0.258 0.603/0.623
500 0.128/0.128 0.258/0.267 0.198/0.204 0.113/0.114 0.261/0.264

0.20 100 0.294/0.306 0.627/0.677 0.483/0.504 0.252/0.267 0.594/0.657
500 0.138/0.135 0.294/0.285 0.219/0.217 0.118/0.117 0.274/0.276

a Proportion of missing genotype per SNP.
b ncase is approximated by 10% of cohort size.
c Haplotypes corresponding to those in table 1. H*5 is the category combining H5, H6, and H7.

which, in turn, defined seven different haplotypes (see
table 1). We chose the most common haplotype as the
baseline and combined two haplotypes that had frequen-
cies lower than 5% into a single ‘rare haplotype’ category.

Table 2 lists the results of comparing the empirical and
the estimated variances (averaged over simulated data)
for the score function corresponding to each individual
haplotype. Overall, the asymptotic estimator appeared to
perform well. Even when the sample size was small,
involving only about 100 cases, the extent of bias for the
asymptotic variance estimator was very small. The bias
was larger for rarer than for common haplotypes, and it
increased with the proportion of missing genotypes. As
the sample size increased, all of the biases became negligi-
ble.

Next, we examined the performance of the global score
test by evaluating its nominal type I error rate and power.
It has often been a matter of debate whether and in what
situation haplotype-based tests of association could be
more powerful than SNP-based tests of association. Thus,
for comparison purpose, we also considered a SNP-based
global test of association as follows. We used a standard
score test procedure for the Cox proportional hazards
model to test for the association of the disease with indi-
vidual marker SNPs, adjusting for multiple comparisons
using the Bonferonni procedure. If at least one marker
SNP was found to be significantly associated with the dis-
ease, then the global null hypothesis of no association in
the genomic region was rejected. In the SNP-based test, if
a subject had missing genotype for a particular SNP, we
imputed the missing genotype by its expected allele count

2p̂2 + p̂(1 – p̂), where p̂ is the estimated allele frequency
from the data using the pooled sample of cases and con-
trols.

A practical issue for haplotype-based association anal-
ysis is how to best deal with rare haplotypes so that their
involvement in a test procedure does not cause numerical
instability and/or loss of power due to the use of large
degrees of freedom. We adopted the common practice of
combining all haplotypes with estimated frequency lower
than 5% into a single ‘rare haplotype category’. If the fre-
quency of this combined category was still less than 5%,
then we further combined it with the least common haplo-
type that had an estimated frequency higher than 5%.
Since estimates of haplotype frequencies varied across
simulated data and rare haplotypes may appear in one
simulation but not in another, the test for association for
the same genomic region could have different degrees of
freedom for different replications. This reflected what
would happen in a real study setting if studies were
repeated.

To evaluate nominal type I error rates, we used the
same simulation setup as that for table 2. From results
shown in table 3, we observed that, in most situations
both the SNP-based and haplotype-based tests main-
tained the chosen · level. When the sample size was small,
occasionally, the observed type I error rates for both of the
tests exceeded the chosen · level.

We evaluated the power of the proposed score test and
the global SNP-based test in a variety of different scenar-
ios. We simulated data for both genes GPX1 and GPX3.
For each gene, we selected one SNP, in turn, to be disease-
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Table 3. Type I error rate for SNP/haplotype-based global test for association

ncase
a Overall proportion of missing SNPs

0 0.05 0.10 0.15 0.20

0.01 100 0.012b/0.007c 0.008/0.010 0.008/0.011 0.011/0.006 0.006/0.003
500 0.008/0.007 0.011/0.006 0.008/0.012 0.009/0.007 0.018/0.014

0.05 100 0.043/0.041 0.058/0.049 0.046/0.049 0.037/0.040 0.048/0.050
500 0.035/0.047 0.044/0.043 0.040/0.043 0.044/0.040 0.032/0.049

0.10 100 0.107/0.113 0.104/0.100 0.098/0.103 0.112/0.124 0.094/0.099
500 0.086/0.121 0.089/0.109 0.105/0.119 0.102/0.125 0.102/0.109

a ncase is approximated by 10% of cohort size.
b Empirical type I error rate for the SNP-based analysis.
c Empirical type I error rate for the haplotype-based analysis.

Table 4. Power for haplotype-based vs. SNP-based test for global association

Causal SNP Overall proportion of missing SNPs when causal SNP is not genotyped

0 0.05 0.10 0.15 0.20

S1 GPX1 0.906a/0.956b 0.900/0.908 0.878/0.868 0.872/0.794 0.872/0.746
GPX3 0.794/0.892 0.792/0.868 0.780/0.772 0.766/0.744 0.730/0.704

S2 GPX1 0.704/0.822 0.698/0.774 0.686/0.714 0.690/0.640 0.654/0.594
GPX3 0.848/0.918 0.838/0.856 0.806/0.798 0.802/0.732 0.764/0.694

S3 GPX1 0.148/0.174 0.146/0.138 0.148/0.110 0.118/0.082 0.140/0.098
GPX3 0.814/0.730 0.792/0.666 0.764/0.596 0.746/0.552 0.708/0.476

S4 GPX1 0.748/0.864 0.744/0.810 0.720/0.754 0.722/0.664 0.708/0.618
GPX3 0.620/0.614 0.592/0.442 0.556/0.334 0.528/0.264 0.484/0.222

S5 GPX1 0.666/0.674 0.670/0.582 0.676/0.504 0.656/0.410 0.656/0.344
GPX3 0.812/0.802 0.806/0.758 0.766/0.696 0.760/0.664 0.736/0.628

a Power for the haplotype-based analysis.
b Power for the SNP-based analysis.

causative and used the other four SNPs as markers in both
of the haplotype- and SNP-based tests of association. In
each scenario, we simulated data assuming ß = log(3) so
that the disease hazard increased 3-fold for carrying one
copy of the true causal SNP. We used cohort size of 1,000
and kept the significance level at 0.05.

Results are shown in table 4. We observed that with 5
SNPs in the two genomic regions within GPX1 and
GPX3, the SNP-based test of association had generally
similar or more power compared to the haplotype-based
test when there were no missing genotype data. Intuitive-
ly, these results are somewhat unexpected. However, care-
ful inspection of the linkage-disequilibrium pattern
shown in tables 2 and 3 reveals that the causal SNP was
tightly linked with at least one of the marker SNPs in the

same gene in most of the simulation scenarios. Thus, the
test of association using individual SNPs, even when the
true causal SNP was not genotyped, had high power.

When we allowed for missing genotype data, we ob-
served that the power for the haplotype-based test in-
creased relative to the SNP-based test for all simulation
scenarios. In particular, even with a modest proportion of
missing genotype information (10% per marker), there
was a significant gain in power for using the haplotype-
based approach when the true causal SNP was S3 or S5 for
GPX1 and S4 for GPX3. These results suggest that in the
presence of significant missing genotype data, haplotype-
based tests of association may be optimal even for regions
with very high linkage where one would ordinarily expect
a SNP-based test of association to be more powerful.
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Discussion

In summary, we have developed a haplotype-based
score test for detecting the association of a disease with a
genomic region of interest using prospective follow-up
information and unphased genotype data collected from
cohort and nested case-control studies. The proposed
method extends the methods of testing association using
generalized linear models [1, 8] to the censored-survival-
data setting. It can account for differential follow-up for
subjects, make efficient use of age at onset information,
adjust for the effect of possibly time-dependent covariates
and account for individual matching in the nested case-
control design. Similar to Schaid et al. [1] and Zaykin et
al. [8], the proposed method could be used to test for an
association of the disease with the whole genomic region
as well as with individual haplotypes. The computational
algorithm we provide takes advantage of existing software
and thus requires very limited extra computing effort.

We have developed the test procedure assuming HWE;
this assumption, however, is not essential. An examina-
tion of the formula for Uß(f̂, Á̂ ) (equation 9) shows that
the HWE assumption is utilized only to compute
Ef�„(D) AG �, the conditional expectation of the diplotype-
specific design vector given the genotype data. We ob-
serve that the score statistic remains unbiased under the
null hypothesis of no association even if we replace
Ef�„(D) AG � by Êf(G ), any arbitrary function of the geno-
type data G. Moreover, from our theoretical calculations
it can also be seen that the asymptotic variance of such a
modified score statistic could be derived using the same
formulas as those derived assuming HWE by replacing
Ef�„(D) AG � by Êf(G ) throughout. Thus, the proposed
score test remains a valid test even when HWE assump-
tion is violated: Ef�„(D) AG � computed under HWE can
be viewed as a particular function for G that is not neces-
sarily the true conditional expectation.

We assumed no ties between the ages at onset of the
cases. For standard Cox analysis of cohort data, both
exact and approximate solutions are available for dealing
with the ties in tk [24, 25]. Since all of the quantities
involved in the proposed test statistic can be obtained
based on a standard CPH analysis, ties could be handled
in this procedure by applying the standard solutions. The
formal justification is straightforward and is not provided
here. For nested case-control studies, following Borgan et
al. [26], we suggest randomly breaking ties before the anal-
ysis is performed. We also observe that the proposed test
procedure, although it has been derived in the context of a
CPH model for prospective designs, is also suitable for

conditional logistic regression analysis of matched case-
control studies.

Using our proposed test, we evaluated the effect of
missing marker genotype data on the power of global tests
in the context of nested case-control studies. We found
that missing genotype data led to a much greater loss of
power for the SNP-based test than for the haplotype-
based test. This result suggests that haplotypes, which
exploit the multivariate correlation structure among the
available markers, can efficiently recover missing geno-
type information on individual markers. Of course, in the
SNP-based test, one can also recover missing genotype
information on a specific SNP by utilizing data available
on other SNPs. In particular, the missing genotype data
for a specific SNP can be imputed by the conditional
expectation of the number of variant alleles given the
genotype for the other SNPs, a quantity that can be com-
puted based on the estimated haplotype frequencies un-
der the HWE assumption. In addition, an alternative
approach for evaluating the association of multiple SNPs
with a disease could be to test the significance of coeffi-
cients in a multivariate genotype-based regression model
that does not require phase information [33]. The power
of such a test procedure, however, could be low compared
to a haplotype analysis if the association primarily exists
due to cis-interaction between SNPs.

A naive, but simple, approach for analyzing cohort-
based studies could be performing a standard logistic
regression analysis, where each subject is classified as a
‘case’ or a ‘control’ depending on whether the subject
developed the disease by the end of follow-up period or
not. In certain situations, for example, when the underly-
ing baseline disease hazard is constant over time and the
censoring is completely random, the null value for relative
risk parameters in the Cox model may correspond to the
null value for odds ratio parameters in the induced logis-
tic regression model. Consequently, in these situations,
testing for haplotype effects using the logistic regression
method should be valid in the sense that it would have
correct · level. To check the above assertion, we con-
ducted a small scale simulation study in the scenario of
table 3 and found that the naive logistic regression analy-
sis indeed maintained the · level in this situation (data
not shown). However, when we compared power in the
scenario of table 4, we found in several situations there
was substantial loss of power in the logistic regression
analysis compared to the Cox analysis (data not shown).

Lin [27] recently proposed methods for testing and
estimation of haplotype effects using data from cohort
studies. They proposed modelling the effect of haplotypes
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on disease risk using a proportional hazards model similar
to ours. For inferences in the presence of phase ambiguity,
however, the author considered a likelihood-based ap-
proach. As described above, the score test we proposed
based on the induced hazard function of the disease given
the genotype data, has several practical advantages in
terms of general applicability to alternative designs and
computational simplicity. The likelihood-based approach
of Lin, on the other hand, allows both testing and parame-
ter estimation in the setting of the full cohort design. In a
companion paper in preparation, we are developing a
method for estimating the haplotype-specific risk parame-
ters (ß) in the Cox model. We have found that the induced
hazard function and the corresponding partial likelihood
formula that we have utilized in this article for developing
a test procedure are also useful for developing relatively
simple estimation methods for various alternative study
designs.

When evaluating the genetic determinants of a disease,
some preliminary knowledge may exist about possibly
time-dependent effects of susceptibility genes. Familial
aggregation studies, for example, suggest that heritable
factors increase the risk of breast cancer more strongly at
younger ages than at older ages. In such situations, more
powerful test procedures can be obtained by weighting the
contribution of each risk set to the score statistic (equa-
tion 9) according to a time-dependent weight function. In
particular, a test for the age-stratified effect of a gene may
be constructed based on simple weight functions of the
form w(T) = I(a ! T ̂  b ] where (a, b] is a fixed age-range
of interest. Weighted forms of the score statistic can also
be applied to reduce the influence of outlying observa-
tions. In the context of standard survival analysis, various
approaches for weighting the log-rank statistics [24, 28]
are available. The utility of these weighting methods in
the context of genetic association studies requires further
research.

Other future areas of research include extension of the
proposed method to the case-cohort design [29], which,
similar to the nested case-control design, is an efficient
alternative to the full cohort design for the study of rare
diseases. Intuitively, various partial-likelihood-based ap-
proaches that have been proposed for analyzing the case-
cohort design under the standard Cox proportional haz-
ards model should also be applicable for the induced haz-
ard model that we have used in this article. Further work
is needed for a formal theoretical development.
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Appendix

For development of the asymptotic theory, we will assume the
nested case-control design (R*k = R̃ k ), but note that the proof for the
cohort design follows by almost identical arguments.

A1: Derivation of Induced Hazard Function Ï�t AG, Z̃ (t )
We derive the induced hazard of disease conditional on the geno-

type data G under the general situation when external time-depen-
dent covariates Z (t ) are involved. We assume that D /G and Z (t ) are
independent. The conditional hazard function can be obtained via
Ï �T AG, Z̃ (T )� = f �t AG, Z̃ (t )�/p�T 6 t AG, Z̃ (t )�. Note p�T 6 t AG, Z̃ (t )�
= ™D DDG p�T 6 t AD, Z̃ (t )�prf (D )/p(G ) and f �T AG, Z̃ (t )� =
™DDDG Ï0(t )eßT„ (D ) + ÁTZ (t ) p�T 6 t AD, Z̃ (t )�prf (D )/p(G ). Thus,
Ï �t AG, Z̃ (t )� = Ï0(t )rG �t; f, ß, Á, Ï0(W)�. This is the end of the proof.

A2: Derivation of Uß (f, Ï ) under the Null Hypothesis
We derive the score functions Uß (f, Á ) under the null hypothesis

ß = 0. The log partial likelihood function is log L = ™k:¢k = 1 [log rGk �t k;
f, ß, Á, Ï0(W)� – log ™lDR̃k rGl �tk; f, ß, Á, Ï0(W)�]. Note that

FrG

Fß
A

ß = 0

= eÁTZ (t ) ™DDDG „ (D )p�T 6 t AD, Z̃ (t )�prf (D )
™DDDG p�T 6 t AD, Z̃ (t )�prf (D )

A
ß = 0

= eÁTZ (t ) ™DDDG „ (D )prf (D )
™DDDG prf (D )

A
ß = 0 

= eÁTZ (t ) E�„ (D ) AG�

and that rG A ß = 0 = eÁTZ (t ). Then taking derivative of log L over ß at ß = 0
gives the desired score function for ß. The score function for Á under
the null hypothesis can simply be calculated.

A3: The Asymptotic Distribution of Uß (f̂, Ï̂)
Denote E�„ (D ) AGi � A f = f* by of*(Gi ). IßÁ (f̂, Á̂ ) and IÁÁ (f̂, Á̂ ) can be

directly obtained from the derivatives of the partial likelihood func-
tion:

IßÁ (f̂, Á̂ ) = 
1
n

™
k:¢k = 1

	™jDR̃kof̂ (Gj )Z j
T eÁ̂ TZj (u )

™jDR̃k eÁ̂TZj (u )

– 
™jDR̃kof̂ (Gj ) eÁ̂TZj (u ) ™j D R̃kZ j

T eÁ̂TZj (u )

�™jDR̃keÁ̂TZj (u )�2 
 (12)

and

IÁÁ (f̂, Á̂ ) = 
1
n

™
k:¢k = 1

	™jDR̃k Z j
b2 eÁ̂TZj (u )

™jDR̃keÁ̂TZj (u )

– �™jDR̃k Zj eÁ̂TZj (u )

�™jDR̃k eÁ̂TZj (u ) �b2 
 , (13)

where a vector with a superscript b2 denotes the vector multiplied
by its transpose.
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A3.1: Proof that n – 1 FUß (f*, Á*)/Ff → 0 for (f*, Á*) between
(f, Á ) and (f̂, Á̂ ).
Let Ni (t ) = ¢iI (Xi ^ t ) be the counting process. Then Mi (t ) =

Ni (t ) – � t
0 Yi(u )eÁTZi (u )Ï0(u )du is a martingale. If Sf*(Gi ) denotes

FE�„ (D ) AGi �/Ff A f = f*,

Ef*(u ) = 
™lDR (u ) Sf*(Gl ) eÁTZl (u )

™lDR (u ) eÁTZl (u )

and

Ẽf*(u ) = 
™lD R̃ (u ) Sf*(Gl ) eÁTZl (u )

™lD R̃ (u ) eÁTZl (u )
,

then

n–1 FUß (f*, Á )
Ff

can be decomposed as

1
n

n

™
i = 1

Ù

�
0
	� Sf* (Gi ) – 

™lD R̃ (u ) eÁTZi (u ) Sf*(Gl )
™lD R̃ (u ) eÁTZi (u ) � dMi (u ) +

�Ef*(u ) – Ẽf*(u )�Yi (u ) eÁTZi (u ) Ï0(u )du
 ,

where Ù is the time of study termination. A slight modification of the
results in Goldstein and Langholz [30] can be made to show that the
first term is a martingale and the second term asymptotically con-
verges to zero. Thus,

1
n
FUß (f*, Á*)
Ff

= 
1
n
FUß (f*, Á )
Ff

+ �1
n
FUß (f*, Á*)
Ff

– 
1
n
FUß (f*, Á )
Ff

� → 0

A3.2: Derivation of Representation (10)
Now we derive the asymptotic distribution of the score functions

for ß under the null hypothesis ß = 0. From the Taylor expansion for

Uß (f̂, Á̂ ) and using results in A3.1, n –1/2 Uß (f̂, Á̂ ) " n–1/2 Uß (f, Á ) –
ißÁ√n(Á̂ –Á ), where (f*, Á*) is between (f, Á ) and (f̂, Á̂ ) and thus (f*, Á*)
→ (f, Á ). Using the Taylor expansion for UÁ (Á̂ ) yields √n (Á̂ – Á ) "
i ÁÁ

–1 n–1/2 UÁ (Á ). Putting the above equations together leads to

1
√n

Uß (f̂, Á̂ ) " 
1

√n
Uß (f, Á ) – ißÁ i ÁÁ

–1 1
√n

UÁ (Á )

F N (0, ißß – ißÁ i ÁÁ
–1 i T

ßÁ)

A3.3: Derivation of the Estimator for ißß under the Null
Hypothesis
The derivation follows Goldstein and Langholz [30] and Xiang

and Langholz [31].

1
√n

Uß (f*, Á ) "

1
√n

n

™
i = 1

Ù

�
0
� of* (Gi ) – 

™lD R̃i (u ) eÁTZi (u ) of*(Gl )
™lD R̃i (u ) eÁTZi (u ) �dMi (u ).

Let

H = 
1

√n

n

™
i = 1

Ù

�
0
� of* (Gi ) – 

™lD R̃i (u ) eÁTZi (u ) of*(Gl )
™lD R̃i (u ) eÁTZi (u ) � dMi (u ),

which is square-integrable martingale with terms in the sum uncorre-
lated. Thus H F N (0, ! H, H 1). Following Langholz [32], ißß, which
is equal to ! H, H 1, can be simply estimated based on an informa-
tion matrix of the form

Ißß (Á̂, f̂) = 
1
n

™
k:¢k = 1

�™jDR̃k of̂ (Gj )b2 eÁTZi (u )

™jDR̃k eÁTZi (u )

– �™jDR̃k of̂ (Gj )b2 eÁTZi (u )

™jDR̃k eÁTZi (u ) �b2� . (14)

References

1 Schaid DJ, Rowland CM, Tines DE, Jacobson
RM, Poland GA: Score tests for association
between traits and haplotypes when linkage
phase is ambiguous. Am J Hum Genet 2002;
70:425–434.

2 Botstein D, Risch N: Discovering genotypes
underlying human phenotypes: past successes
for mendelian disease, future approaches for
complex disease. Nat Genet 2003;33:228–237.

3 Risch N, Merikangas K: The future of genetic
studies of complex human diseases. Science
1996;273:1516–1517.

4 Epstein MP, Satten GA: Inference on haplo-
type effects in case-control studies using un-
phased genotype data. Am J Hum Genet 2003;
73:1316–1329.

5 Fallin D, Schork N: Accuracy of haplotype fre-
quency estimation for biallelic loci via the ex-
pectation-maximization algorithm for un-
phased diploid genotype data. Am J Hum Gen-
et 2000;67:947–959.

6 Wallenstein S, Hodge S, Weston A: A logistic
regression model for analyzing extended haplo-
type data. Genet Epidemiol 1998;15:173–181.

7 Stram D, Pearce CL, Bretsky P, Freedman M,
Hirschhorn JN, Altshuler D, Kolonel LN, Hen-
derson BE, Thomas DC: Modeling and E-M
estimation of haplotype-specific relative risks
from genotype data for a case-control study of
unrelated individuals. Hum Hered 2003;55:
179–190.

8 Zaykin DV, Westfall PH, Young SS, Karnoub
MA, Wagner MJ, Ehm MG: Testing associa-
tion of statistically inferred haplotypes with
discrete and continuous traits in samples of
unrelated individuals. Hum Hered 2002;53:
79–91.

9 Thomas DC: Addendum to: Methods of cohort
analysis: Appraisal by application to asbestos
mining, by FDK Liddell, JC McDonald, and
DC Thomas. J R Stat Soc, series A, 1977;140:
469–491.

10 Hu FB, Doria A, Li T, Meigs JB, Liu S, Memi-
soglu A, Hunter D, Manson JE: Genetic varia-
tion at the adiponectin locus and risk of type 2
diabetes in women. Diabetes 2004;53:209–
213.

11 Setiawan VW, Hankinson SE, Colditz GA,
Hunter DJ, De Vivo I: HSD17B1 gene poly-
morphisms and risk of endometrial and breast
cancer. Cancer Epidemiol, Biomarkers Pre-
vention 2004;13(2):213–219.

12 Mohlig M, Boeing H, Spranger J, Osterhoff M,
Kroke A, Fisher E, Bergmann MM, Ristow M,
Hoffmann K, Pfeiffer AF: Body mass index
and C-174G interleukin-6 promoter polymor-
phism interact in predicting type 2 diabetes. J
Clin Endocrinol Metab 2004;89:1885–1890.

13 Nieters A, Linseisen J, Becker N: Association
of polymorphisms in Th1, Th2 cytokine genes
with hayfever and atopy in a subsample of
EPIC-Heidelberg. Clin Exp Allergy 2004;34:
346–353.



A Haplotype-Based Test of Association Hum Hered 2004;58:18–29 29

14 Haiman CA, Stram DO, Pike MC, Kolonel LN,
Burtt NP, Altshuler D, Hirschhorn J, Hender-
son BE: A comprehensive haplotype analysis of
CYP19 and breast cancer risk: The Multiethnic
Cohort. Hum Mol Genet 2003;12:2679–2692.

15 Paltoo D, Woodson K, Taylor P, Albanes D,
Virtamo J, Tangrea J: Pro12Ala polymorphism
in the peroxisome proliferator-activated recep-
tor-gamma (PPAR-gamma) gene and risk of
prostate cancer among men in a large cancer
prevention study. Cancer Lett 2003;191:67–
74.

16 Woodson K, Ratnasinghe D, Bhat NK, Stewart
C, Tangrea JA, Hartman TJ, Stolzenberg-Solo-
mon R, Virtamo J, Taylor PR, Albanes D:
Prevalence of disease-related DNA polymor-
phisms among participants in a large cancer
prevention trial. Eur J Cancer Prevention
1999;8:441–447.

17 Giovannucci E, Chen J, Smith-Warner SA,
Rimm EB, Fuchs CS, Palomeque C, Willett
WC, Hunter DJ: Methylenetetrahydrofolate re-
ductase, alcohol dehydrogenase, diet, and risk
of colorectal adenomas. Cancer Epidemiol Bio-
markers Prevention 2003;12:970–979.

18 Hsu L: Genetic association tests with age at
onset. Genet Epidemiol 2003;24:118–127.

19 Zhao LP, Li S, Khalid N: A method for the
assessment of disease associations with single-
nucleotide polymorphism haplotypes and envi-
ronmental variables in case-control studies.
Am J Hum Genet 2003;72:1231–1250.

20 Fallin D, Cohen A, Essioux L, Chumakov I,
Blumenfeld M, Cohen D, Schork N: Genetic
analysis of case/control data using estimated
haplotype frequencies: application to APOE lo-
cus variation and Alzheimer’s disease. Genome
Res 2001;11:143–151.

21 Excoffier L, Slatkin M: Maximum-likelihood
estimation of molecular haplotype frequencies
in a diploid population. Mol Biol Evol 1995;12:
921–927.

22 Long J, Williams R, Urbanek M: An EM algo-
rithm and testing strategy for multiple-locus
haplotypes. Am J Hum Genet 1995;56:799–
810.

23 Niu T, Qin Z, Xu X, Liu JS: Bayesian haplo-
type inference for multiple linked single nu-
cleotide polymorphisms. Am J Hum Genet
2002;70:157–169.

24 Fleming TR, Harrington DP: Counting pro-
cesses and survival analysis. New York, John
Wiley & Sons, 1991.

25 Hosmer DW, Lemeshow S: Applied survival
analysis: regression modeling of time to event
data. New York, John Wiley & Sons, 1999.

26 Borgan O, Goldstein L, Langholz B: Methods
for the analysis of sampled cohort data in the
Cox proportional hazards model. Ann Stat
1995;23:1749–1778.

27 Lin DY: Haplotype-based association analysis
in cohort studies of unrelated individuals. Gen-
et Epidemiol 2004;26(4):255–264.

28 Sasieni P: Maximum weighted partial likeli-
hood estimators for the Cox model. J Am Stat
Assoc 1993;88:144–152.

29 Prentice, RL: A case-cohort design for epidemi-
ologic cohort studies and disease prevention
trials. Biometrika 1986;73:1–11.

30 Goldstein L, Langholz B: Asymptotic theory
for nested case-control sampling in the Cox
regression model. Ann Stat 1992;20:1903–
1928.

31 Xiang AH, Langholz B: Robust variance esti-
mation for rate ratio parameter estimates from
individually matched case-control data. Bio-
metrika 2003;90:741–746.

32 Langholz B: Robust variance estimation for
rate ratio parameter estimates from individu-
ally matched case-control data: Supplemental
material. Technical Report, Department of
Preventive Medicine, University of Southern
California, 2003.

33 Cordell HJ, Clayton DG: A unified stepwise
regression procedure for evaluating the relative
effects of polymorphisms within a gene using
case/control or family data: Application to
HLA in type 1 diabetes. Am J Hum Genet
2002;70:124–141.


